AM STEREO SIGNAL GENERATOR

KSG4000

OPERATION MANUAL

All or any parts of this manual may not be reproduced in any forms, without express written permission of Kikusui Electronics Corporation.
The contents of this manual, including the specifications of the instrument, are subject to change without notice.
©2002 Copyright Kikusui Electronics Corporation. Printed in Japan. All rights reserved.

Power Requirements of this Product

Power requirements of this product have been changed and the relevant sections of the Operation Manual should be revised accordingly. (Revision should be applied to items indicated by a check mark .)				
☐ Input voltage				
The input voltage of this product is VAC, and the voltage range is to VAC. Use the product within this range only.				
☐ Input fuse				
The rating of this product's input fuse isA,VAC, and				
WARNING WARNING				
 To avoid electrical shock, always disconnect the AC power cable or turn off the switch on the switchboard before attempting to check or replace the fuse. 				
 Use a fuse element having a shape, rating, and characteristics suitable for this product. The use of a fuse with a different rating or one that short circuits the fuse holder may result in fire, electric shock, or irreparable damage. 				
☐ AC power cable				
The product is porvided with AC power cables described below. If the cable has no power plug, attach a power plug or crimp-style terminals to the cable in accordance with the wire colors specified in the drawing.				
 The attachment of a power plug or crimp-style terminals must be carried out by qualified personnel. 				
☐ Without a power plug ☐ Without a power plug				
Blue (NEUTRAL) White (NEUTRAL)				
Brown (LIVE)Black (LIVE)				
Green/Yellow (GND) Green or Green/Yellow (GND)				
☐ Plugs for USA ☐ Plugs for Europe				
Provided by Kikusui agents Kikusui agents can provide you with suitable AC power cable. For further information, contact your Kikusui agent.				
☐ Another Cable				

CONTENTS

	Page
1. INTRODUCTION	1
1.1 General Description	1
1.2 Features	1
2. SPECIFICATIONS	3
3. PREPARATION FOR USE	9
3.1 Unpacking and Inspection	9
3.2 Line Voltage and Fuse Selection	9
3.3 Surrounding Temperature/Humidity, Warm-up Time,	
and Installation Place	9
4. OPERATION	10
4.1 Front Panel Features	10
4.2 Rear Panel Features	12
4.3 Turing on the Power Supply	13
4.4 Setting Frequency	13
• • • • • • • • • • • • • • • • • • • •	13
4.4.1 Setting frequncy by numeric keys	15
4.4.3 Setting frequency step for △ and ▽ keys	16
4.4.4 Frequency difference ΔFREQ and FREQ Keys	17
4.5 Setting Output Level	19
	19
4.5.1 Setting output level by numeric keys	20
4.5.3 Setting output level step for A and keys	21
4.5.4 Setting the Independent 4-Point Memory	
4.6 Setting the Modulation	23 23
•	
	23 24
4.6.3 Setting modulation by numeric keys	24

CONTENTS

(Cont'd)

			Page
	4.6.5	External modulation signal connection and setting	. 26
	(1)	Connection and setting method	. 26
	(2)	Setting range	. 26
	4.6.6	Setting the negative peak clipper	. 27
4.	7 Memo	ory	. 28
	4.7.1	Memory recall method	. 28
	4.7.2	Memory store method	. 29
	4.7.3	Storing data into a part of memory row	
		(Setting RTN key)	. 31
	4.7.4	How to release RTN key	. 31
	4.7.5	Recalling more than columns continuously	
		(Setting NEXT key)	. 32
	4.7.6	How to release NEXT key	. 32
	4.7.7	Copying memory data to another KSG4000	. 33
5.	REMOTE	CONTROL	. 34
5.	1 Gene	eral Discription	. 34
	5.1.1	Outline	. 34
5.	2 Ope	ration Procedure	. 34
	5.2.1	Explanation of Remote Control Connector	. 34
	5.2.2	Input data timing	. 36
	5.2.3	Panel key code table	. 37
	5.2.4	Setting frequency by remote control (example)	. 39
	5.2.5	Remote Control circuit diagram example and operation	. 40
	5.2.6	Memory Display output circuit example	. 42
6.	BATTER	Y BACKUP AND INITIALIZING CPU	43
7.	GP-IB		44
7.	1 Int:	roduction	44
	7.1.1	General description	44
	7 1 2	Features	. 44

CONTENTS

(Cont'd)

	I	Page
7.2 Per	formance	. 44
7.2.1	Interface functions	. 44
7.2.2	Electrical specifications related to interface system	. 45
7.3 Ope	eration procedure	. 45
7.3.1	Preparation for use	. 45
7.3.2	Address setting method	. 45
7.3.3	Available control command and bus line commands	. 47
7.3.4	Program code table	. 47
7.3.5	Basic data setting method	. 51
7.3.6	Connector pin allocation diagram	. 52
	Reference (Program example)	

1. INTRODUCTION

1.1 General Description

The KSG4000 is an AM signal generator that is disigned to meet a Motorola AM stereo system and employs a phase lock loop (PLL) including a reference quartz for high stablity of frequency.

GP-IB interface is employed as a standard configuration.

The output signal range, 200kHz to 2MHz, covers the AM broadcast frequency bandwidth, and the output level range is $-20\text{dB}\mu$ to $132\text{dB}\mu$ (0.1 μ V to 4Vrms) open circuit (dBm setting posible). AM distortion, S/N ratio, stereo separation characteristics, etc. are all superb.

Also, extensive external control function provide still greater ease of opertion. The standard-equipped GP-IB interface in particular facilitayes expansion into system instrumentation.

Further more, variation of frequency, output level and modulation can be freely combined, and up to 100 point (continuously or in blocks) may be stored and recalled. Up to 4 output level points may be independently stored and recalled.

Applications include resarch and development of AM stereo receivers and the like, as well as adjustments and testing on the assembly line, etc.

1.2 Features

- (2) The output level can be selected from a wide range of $-20 \, \text{dB}\mu$ to $132 \, \text{dB}\mu$ (open-circuit), can be set to 3-digits in 1dB increments, and is also independently equipped with a 4 point memory function.

- (3) The carrier frequency, output level can be incremented/decremented by the unit of a specified value.
- (4) A preset key is attached for modulation, permitting one-touch setting of either AM 30% or 95%.
- (5) The KSG4000 gives small modulation distortion, high S/N ratio, and good stereo characteristic.
- (6) All the information displayed on panel can be memorized. It can be used separated into 10 blocks with 10 points each , or 100 continuous points and 4 output level points may be stored and recalled.
- (8) Input data can be corrected immediately by the use of back space (key.
- (7) The KSG4000 can be operated easily because all the operations are controlled by a microprocessor and specified values are displayed in digital mode.
- (9) Data can be copied from the memory of one KSG4000 to that of another KSG4000 by the pressing of DUMP key.
- (10) All panel operation are remote-controllable, including memory store/recall, frequncy, output level, percentage modulation setting, rotary knob, etc.
- (11) Frequncy, output level, percentage modulation, memory, etc. GP-IB control is standard-equipped.

2. SPECIFICATIONS

• Method : C-QUAM (Motorola) method

Frequency (RF)

Range : 200kHz to 2MHz

Resolution : 10Hz

Display : 6-digit readout, \triangle FREQ display, and \pm frequency

inversion function

Accuracy : ± 50 Hz

o Output

Range : $dB\mu$ - 20dB μ to 132dB μ (0dB = 1 μ V)

 $(0.1\mu V \text{ to } 4Vrms)$

 50Ω dBm -133dBm to 19dBm

Unit : Two types of units, EMF dBµ for open-circuit at

 $0dB=1\mu V$ and dBm for 50Ω output imedance.

Resolution : 1dB

Display : 3-digit readout that can be read directly in

each one of the two unit types

Memory : Four mutually independent point (A/B/C/D),

with STORE/RECALL key

Standard level : $\pm 1dB$ (Output = $126dB\mu$)

accuracy

Attenuator accuracy : $\pm 1dB$ (Output $\geq 20dB$)

 $\pm 1.5 dB$ (Output $\geq -10 dB$)

 $\pm 2dB$ (Output < -10dB)

Output impedance : 50Ω BNC type connector

VSWR : ≦ 1.2

Spurious signals : (Fundamental wave = 0dBc)

Harmonics $\leq -40 \, dBc$ non-harmonics $\leq -50 \, dBc$

Residual modulation : Demodulation band width = 50Hz to 10kHz

(S/N) RF = 200kHz to 1.9MHz

AM component : Ratio to MAIN 50% AM

 \geq 65dB (\leq 0.03%)

PM component : Ratio to SUB 50% AM

 \geq 46dB (\leq 0.25%)

Modulation

Modulation mode according to input signal

Expression	Input signal	Modulation mode
EXT L, R	External L, R signal	Stereo
Signal tone	Internal test tone	Stereo
	External test tone	MAIN, L, R, SUB
Pilot	Internal pilot signal	Stereo unmodulated

Internal modulation : 400Hz and 1kHz; $\pm 3\%$

frequency

External modulation

1) Input : AF/L and R

2) Frequency : Modulation frequency 1kHz, modulation factor 50%

characteristics ① $\pm 0.5 dB$ 50Hz to 10kHz

 $\bigcirc 2$ ± 1dB 10kHz to 15kHz

3) External modulation: $10k\Omega$ approx. (unbalance)

input impedance

4) Input voltage :

3Vp-p approx.

requirement for

external modulation

Note: For the above input voltage, an error of $\pm 2\%$ is allowed by HI-LO monitor.

Modulation factor

① L, R modulation (AM, PM modulation)

Range

: 0 to 100%

Display

: 2-digit readout

Resolution

: 1%

Accuracy

: \leq (indicated value ± 5)%

Distortion

: At demodulation range: 50Hz to 10kHz

modulation frequency lkHz

Modulation factor 50%, RF 200kHz to 1.9MHz

≤ 1%

② MAIN modulation (AM modulation)

Range

0 to 100% (indicator goes up to 125%)

Display

3-digit readout

Resolution

: 1%

Accuracy

: \leq (indicated value ± 5)% (At 0 to 99%)

Distortion

: At demodulation range: 50Hz to 10kHz

modulation frequency 1kHz

Modulation factor 50%, RF 200kHz to 1.9MHz

≤ 0.2%

(3) SUB modulation (PM modulation)

Range : 0 to 100% (100% = $\pm 45^{\circ}$)

Display : 3-digit readout

Resolution : 1%

Accuracy : \leq (indicated value \pm 5)% (At 0 to 99%)

Distortion : At demodulation range: 50Hz to 10kHz

modulation frequency lkHz

Modulation factor 50%, RF 200kHz to 1.9MHz

≤ 1%

Separation : \geq 36dB 400Hz to 4kHz

 \geq 26dB 100Hz to 7.5kHz

Crosstalk : At modulation frequency 1kHz, modulation factor

50%

 \leq -40dB MAIN \rightarrow SUB

 \leq -46dB SUB \rightarrow MAIN

Pilot

Frequency : $25Hz \pm 1\%$

Modulation factor : 0 to 10%

Display : 3-digit readout

Resolution : 0.1%

Accuracy : \leq (indicated value \pm 5)%

Negative peak clipper : ON/OFF switchable 95%±5% semi-fixed adjustable

Setting functions: 1) The numeric keys and rotary knob (with

cursor desgination) for specifying carrier

frequency, output level, modulation mode,

and memory

- 2) Step keys for specifying carrier frequency and output level
- 3) Preset keys for specifying 30% and 95% (for AM)
- Memory function

:

- 1) 100 point for carrier frequency, output level, modulation level, modulation mode, etc.
- The memory can be used in blocks of 10 points or as a continuous space of 100 points
- 3) Output level 4-point independent
- DUMP function
- The contents of the 100-point memory can be transferred to the memory of the same model signal generator by DUMP key.
- Remote control
- : The carrier frequency, output level, and modulation mode can be stored/recalled, the carrier frequency and output level can be incremented/decremented by steps or continuously by rotary knob, modulation can be turned ON/OFF, etc.
- o GP-IB Interface
- : SHO, AH1, TO, L1, SRO, RL1, PPO, DC1, DTO, CO
- Leakage Field
 Strength
- The measurement of OdB (1µV) is not affected.
- o Backup battery is provided.
- o Power requirements

Line voltage

: AC 100V, 115V, 215V, 230V; \pm 10% allowance (selectable by voltage selector plug on rear panel)

Line frequency : 50Hz/60Hz

Power dissipation : Approx. 50VA

Mechanical specifications

Dimensions of main : 430 (W) imes 99 (H) imes 300 (D) mm

frame $(16.93 (W) \times 3.90 (H) \times 11.81 (D) in.)$

Maximum dimensions : 445 (W) \times 119 (H) \times 355 (D) mm

 $(17.52 \text{ (W)} \times 4.69 \text{ (H)} \times 13.98 \text{ (D)} \text{ in.)}$

Weight : Approx. 7.5kg (16.5 lbs)

• Environmental Conditions (temperature and humidity)

Range to satisfy : 5 to 35°C (41 to 95°F), 85% or less

specifications

Allowable range : 0 to 40° C (32 to 104° F), 90% RH or less

for operation

Accessories

Output cable (SA550) 1
Power cable 1
Fuse 0.1A 1
Fuse 0.5A 1
Operation manual 1

o Parallal Interface : Factory-installed option

(N.B. cannot be used together with GP-IB

interface)

3. PREPARATION FOR USE

3.1 Unpacking and Inspection

Before being shipped from the factory, the KSG4000 goes through thorough mechanical and electrical examinations and inspections, and its correct operation is confirmed and guaranteed.

On receiving the instrument, inspect it for any damage that may have been caused during transportation. Should a damage be found, notify the Sales Office immediately.

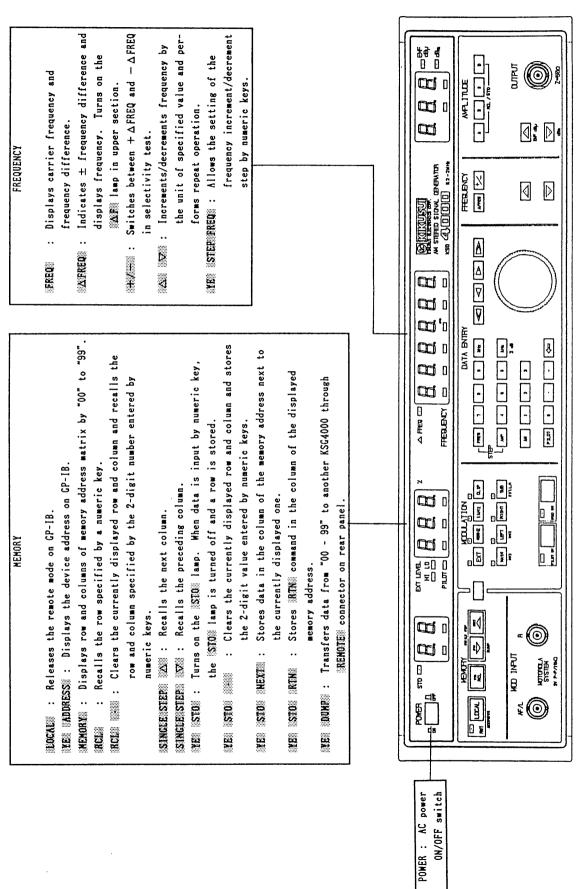
3.2 Line Voltage and Fuse Selection

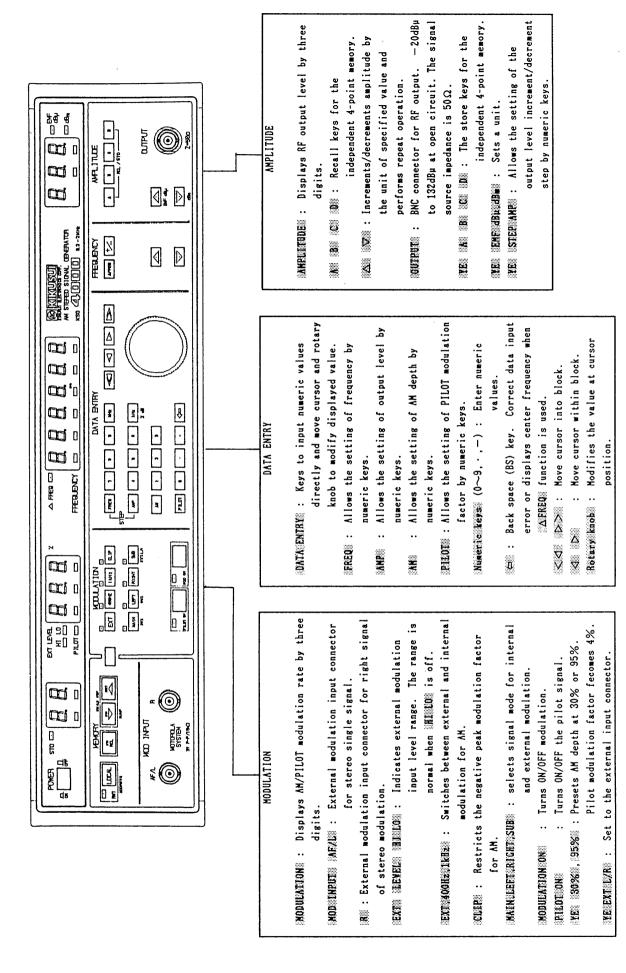
Select a voltage range from the table below by the voltage selection pulg on the rear panel of KSG4000, and the instrument can be used in the selected voltage range.

Before connecting the power supply cord to the instrument, verify that the voltage selection is matched to the power source. When the voltage range is changed, change the fuse also according to the table below.

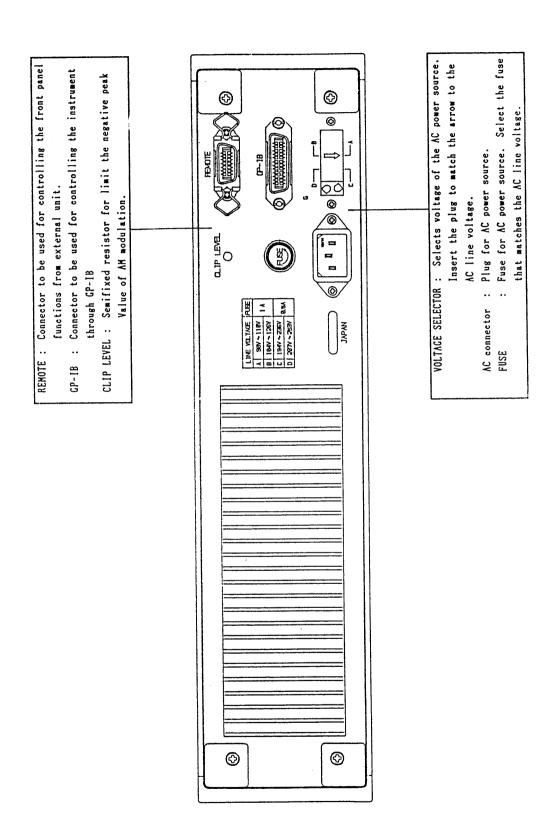
Application of a voltage beyond the selected range will cause in complete operation or failure.

Setting Position	Center Voltage	Line Voltage Range	Fuse
A	100V	90 - 110V	1.0A
В	115 V	104 - 126V	7
С	215 V	194 - 236V	0.5A
D	230 V	207 - 253 V	


3.3 Surrounding Temperature/Humidity, Warm-up Time, and Installation Place

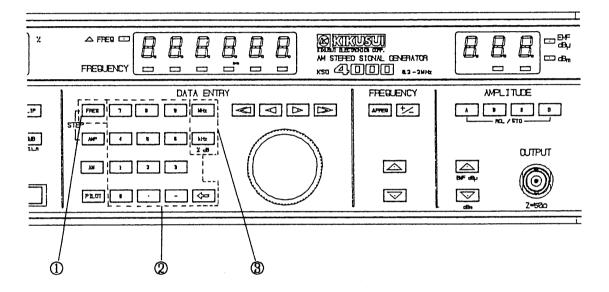

The KSG4000 operates correctly in temperatures from 0 to 40°C (32 to 104°F). If the instrument is used or placed under high temperature and humidity for a long time, failures will occur and the life of the instrument will be shortened.

The instrument requires the warm-up time of 30 minutes. Do not use the instrument near a strong magnetic field or electromagnetic waves.


4. OPERATION

4.1 Front Panel Features

4.2 Rear Panel Features



4.3 Turning on the Power Supply.

Connect the power cable to the power source of the selected voltage and press the POWER switch. All the LEDs on front panel come on and then the status found before the power was turned off is displayed. (Exiept HI·LO indicators).

4.4 Setting Frequency

4.4.1 Setting frequency by numeric keys

Press the REO key and enter a desired value by numeric keys $(0\sim 9,\cdot)$. Press keys in the order of ①, ②, and ③ in the above chart. If a key outside of the frame is pressed, the value found before the REEO key was pressed is displayed.

Press the MHz or kHz key on completion of the numeric key entry, and the specified value is displayed in the [FREQUENCY] section correctly. The maximum number of digits for the input value is 6; a value of more than six digits is not accepted. When pressing a numeric key by mistake, press the FREQ key again

and enter the desired value by numeric keys or correct the value of the particular digit by the (back space) key.

If the MANP, and, or PILOT key has not been pressed after the unit key (MANZ or KHZ) is pressed, a different frequency can be set only by the numeric keys and unit key without the necessity of pressing the EREO key.

(a) Example: 1234.56kHz is input.

..... Turned off FREQUENCY display Key operation (1) FREO $\times \times \times \times \times \times$ Previous value 2 1 1 --- ---(3) 2 120000 **4**) **3** 123000 **(5)** 4 1234 --**6** 1234.00 1234.5 ⑦ 5 **(8) 6** 1234.56 (9) kHz 1234.56

× Undefined

Press keys in the order of ① to ② in the above chart, the display is shown in the column on the right.

(b) Example: 455kHz is input.

Key operation	FREQUENCY display
FREQ	1234.56
4	400000
5	450000
5	4550 00
kHz	455.00

(c) Example: 1.1MHz was to be input, but 1.2MHz was input by mistake.

Key operation	FREQUENCY display
PREQ	4 5 5 . 0 0
	1
	1.0000
2 "2"	s pressed 1.2
for	" by mistake
6	1.0000
	$1\cdot 1$
MHz	1100.00

If a numeric key is pressed by mistake as in the above example, the character of the pressed key can be deleted by the pressing of key. If the is pressed continuously, all the displayed characters are deleted and the previous value is displayed.

(d) Example: 2MHz was input for 1MHz by mistake.

-	
Key operation	FREQUENCY display
FREQ	1 1 0 0 . 0 0
2	2
Miz	2000.00
	1
MHZ	1000.00

If an error is found after the unit key is pressed as in the above example, the correct frequency can be input without pressing the EREO key again.

4.4.2 Rotary knob

The rotary knob increases or decreases the value of the digits at and above the cursor position in the [FREQUENCY] display section. If the cursor is not found in the [FREQUENCY] display section, bring it into the section by the or key; to move the cursor within the section, use the or key.

There is no need to set the MHz or kHz unit keys when making setting with the Rotary knob.

(a) Example: To change frequency from 1000kHz to 1002kHz

The mark "__" denotes the cursor position

Key operation		FREQUENCY display
		1 0 0 0 . <u>0</u> 0
d	Press once	1 0 0 <u>0</u> . 0 0
	Turn the rotary knob clockwise by	1 0 0 <u>2</u> · 0 0
	two steps	

(b) Example: To change frequency from 1002kHz to 802kHz


Key operation FREQUENCY display

key operation		INEQUENCY GISPINS
		1 0 0 <u>2</u> . 0 0
4	Press twice	1 <u>0</u> 0 2 . 0 0
	Turn the rotary knob	<u>8</u> 02.00
	counterclockwise by	
	two steps	

4.4.3 Setting frequency step for and keys

Set a desired step value (minimum 10Hz) for the [FREQUENCY] and keys, and the frequency can be incremented or decremented by the unit of that value.

In setting the value, the cursor position in the [FREQUENCY] display section may be ignored.

Input the step value in the order of ①, ②, ③, and ④ shown in the above chart.

The key in the explanation below means the yellow key of number ①. This key functions as a shift key; the function of a yellow key on the panel pressed after the KE key is different from that of the same key pressed without KE key.

(a) Example: To set 9kHz for and keys when carrier frequency is 1MHz.

Key operation	FREQUENCY display
FREQ	802.00
	1000 00
MHZ	1000.00
YE STEP FREQ	1000.00
9	900000
kHz	1000.00
A Press once	1009.0

Keep pressing the or key in the [FREQUENCY] section, and the repeat function is applied to keep increasing or decreasing the frequency by the unit of 9kHz.

4.4.4 Frequency difference ΔΕΝΕΟ and +/ keys

The AFREQ function, to check the value of change in frequency, is useful for measuring the band width of a receiver.

When the \triangle FREQ key is pressed, the \triangle F indicator in the [FREQUENCY] display section is turned on and the frequency difference (\triangle FREQ) is displayed.

(a) Example: To set 10kHz for □ keys when the center frequncy is 1000kHz.

Key operation	FREQUENCY disp	lay
YE	$\times \times \times \times \times \times$	
STEP FREQ	$\times \times \times \times \times \times$	
	100000	
0	100000	
kHz	$\times \times \times \times \times \times$	
PREQ	$\times \times \times \times \times \times$	
	100000	
0	100000	
0	100000	
0	ىپ 1000	
kHz	1000.00	
ΔFREQ	JJJ 0.00	Δ F indicator
		comes on
[FREQUENCY]	1 0 . 0 0	Carrier frequency 990kHz
	JJJ 0.00	

If the operator keeps pressing the A or key in the [FREQUENCY] section, the repeat function is applied and the frequency keeps increasing or decreasing by the unit of 10kHz. If the key is pressed in the above example, the carrier frequency returns to the initial value (center value).

(b) Example: 1000kHz is set currently.

Key operation FREQUENCY display

1000.00

ΔFREQ

0.0 <u>0</u> indicator

comes on.

Press three ____0.00

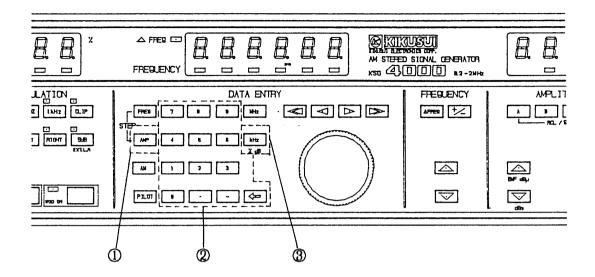
times

Turn the rotary — 50.00 Carrier frequecy knob counter- 950kHz

clockwise by
five steps

Δ FREQ

950.00

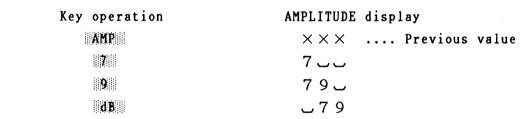

To release the Δ FREQ function, press the $\|\Delta$ FREQ key again. In the above example, the carrier frequency effective after the release is 950kHz.

(c) Example: Using key after modification of 1000kHz by $\Delta\,\text{FREO}$

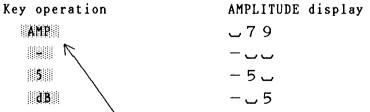
Key operation	FREQUENCY disp	lay
FREQ	1000.00	
∆ FREQ	JJJ 0.00	ΔF indicator
		comes on
2	2000 00	
0	200000	
kHz	20.00 پات	Carrier frequency
		1020kHz
+/-	20.00 پ	Carrier frequency
		980kHz
A FREQ or	980.00	
FREQ		

4.5 Setting Output Level

4.5.1 Setting output level by numeric keys


Press the AMP key and enter a desired value by numeric keys $(0\sim 9,-)$.

Press keys in the order of ①, ②, and ③ in the above chart.


If a key outside of the frame is pressed, the value displayed before the AMP key was pressed is displayed again.

After entering a value by numeric keys, press the HB (KHZ) key. Then, the value is displayed in the [AMPLITUDE] section correctly.

(a) Example: To set 79dB

(b) Example: To set -5dB

The key need not be pressed if an output level is to be set immediately after another output level.

(c) Example: 46dB was to be set, but an error was made during the setting (Unit = EMF $dB\mu$)

Key oper	atio	n		AMPLITUDE	display
AMP				5 پ –	
4				4 \sim \sim	
9	"9"	was	pressed	49 پ	
	for	"6"	by mista	k e	
#				4 پ پ	
6				پ 4 6	
dB				<u>4</u> 6	

If an error is made during the setting by numeric keys, correct the error by the key. If an error is found after the key is pressed, enter the correct value by numeric keys again.

If an output level higher or lower than the maximum or minimum value allowed for the specified unit is set, the [AMPLITUDE] section displays the previous value.

4.5.2 Rotary knob

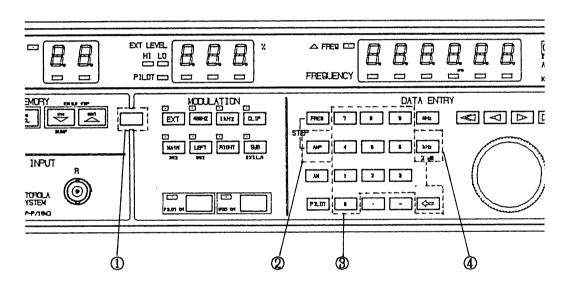
The rotary knob increases or decreases the value of the digits at and above the cursor position in the [AMPLITUDE] section. Use the or the key for moving the cursor. Turn the rotary knob clockwise, and the output level will increase; turn it counterclockwise, and the output level will decrease.

(a) Example: To change output level from 46dB to 66dB (Unit = EMF dB μ)

	The mark	" " denotes the cursor position
Key opera	ation	AMPLITUDE display
		ے 4 <u>6</u>
4	Press once	ے <u>4</u> 6
	Turn the rotary	ے <u>6</u> 6
	knob clockwise by	
	two steps	

(b) Example: To change output level from 66dB to 60dB

Key operation AMPLITUDE display


Press once $-\frac{6}{6}$ Turn the rotary $-\frac{6}{0}$ knob counterclockwise by six steps

There is no need to press the de (km²) key when making setting with the Rotary knob.

4.5.3 Setting output level step for and keys

Set a desired step value (minimum ldB) for the [AMPLITUDE]

and keys, and the output level can be incremented or decremented by the unit of that value.

Press keys in the order of ①, ②, ③, and ④ in the above chart.

(a) Example: To set 2dB for 数 and 数 keys when the output level is 60dB

Key operation

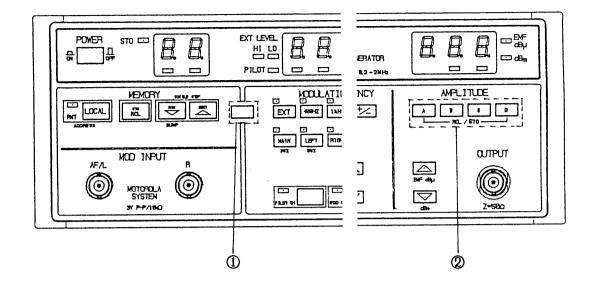
YE STEP AMP

2 0 6 0

2 0 6 0

AMPLITUDE display

6 0


7 6 0

AMPLITUDE display

To change the output level continuously by the step of 2dB, keep pressing the [AMPLITUDE] key.

When the key remains pressed, a repeat function is applied.

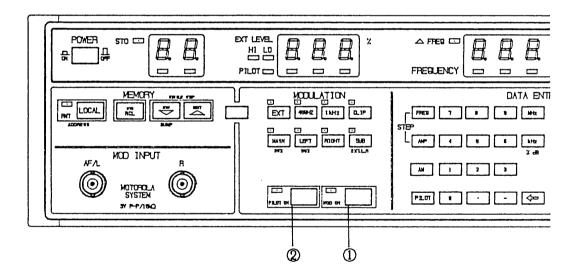
4.5.4 Use of independent 4-Point memory

In addition to the main memory, four memory areas corresponding to keys a to in section (2) in the above chart are provided to contain values of output level only.

To store the currently displayed value of output level, press the YE key in section ① and one of the keys A to D in section ② in this order. The value is stored into the memory area corresponding to the key in section ② that has been pressed. That is, the key A to D are used as memory addresses. To recall the stored value, press one of the keys A to D that corresponds to the are a containing the value.

These four memory areas do not affect the main memory at all.

4.6 Setting the Modulation


4.6.1 YE key

- (a) Setting of AM modulation 30% and PILOT modulation 4% with EE
- (b) Setting of AM modulation 95% and PILOT modulation 4% with \$\text{XE}\$
- (c) Setting of stereo modulation external input L,R connectors with

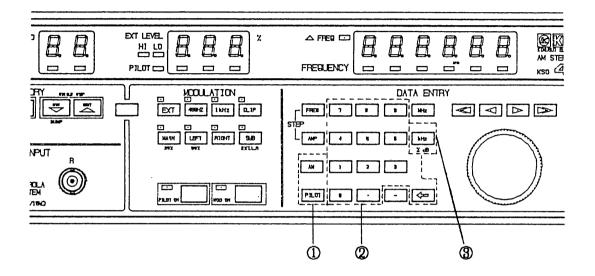
4.6.2 Setting the modulation source

Press a modulation source switching key, and the corresponding indicator is turned on.

Key ① turn ON/OFF modulation source of AM and PM. key ② turn ON/OFF the modulation of PILOT. Each time the key is pressed, the relevant modulation is turned on and off alternately.

(a) Example: 60% depth is to be set for 400Hz internal AM source

Key Operation Modulation Display


400Hz		400Hz lights.
AM	$\times \times \times$	Previous value
6	د 6	
0	60 ت	
%	_ 60	

(b) Example: The modulation is to be turned off.

The modulation is terminated when key 1 or 2 is pressed and the ON indicator is turned off.

At this time, 0% or 0.0% is displayed in the [MODULATON] section.

4.6.3 Setting modulation by numeric keys

Press keys in the order of ①, ②, and ③ in the above chart.

First, press the water keys in [DATA ENTRY] section, and the previously set modulation factor is displayed with unit in the [MODULATON] section.

Enter a desired values with numeric keys (0 9,). After entering the value, press (kHz). Then, the value is key is displayed in the [MODULATON] section with the specified unit.

Any desired values may be specified by numeric keys (0 9), but the maximum AM depth and pilot level are 125% and 10% respectively, and the resolution 1% and 0.1%. When the pilot modulation factor is displayed, the pilot indicator is turned on.

(a) Example: To set AM 30%.

Key Operation	Modulation Display	
AM	$ imes imes imes\cdots$ Previous value	
3	3 👊	
0	30 🖵	
%	J 3 0	

(b) Example: To set PILOT 10%

Key Operation
Modulation Display

★★・・・・・ Previous value

1
□

1
0

1
0

1
0

1
0

4.6.4 Rotary knob

The rotary knob can modify AM depth by increasing or decreasing the value of the digit at the cursor position in [MODULATON] section. When the cursor is not found in the [MODULATON] section, bring it into the section by the or key; when it is found in the section, move it by the section by the

After changing the modulation factor by the rotary knob, the unit key (| 版版 or | 溪) need not be pressed.

(a) Example: To change AM depth from 30% to 25%.

The mark "__ " denotes cursor position.

Key Operation Modulation Display

Press once. 30

Turn the rotary
knob 5 steps
counterclockwise. 25

(b) Example: To change PILOT depth from 10% to 4%.

Key Operation Modulation Display

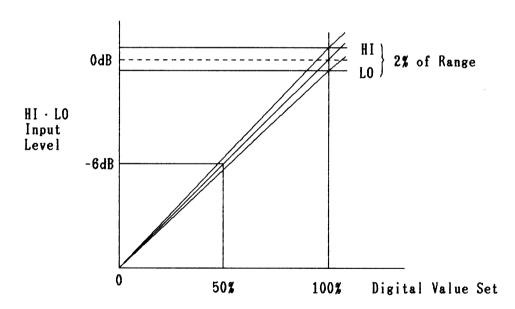
PILOT: $10 \cdot 0$ Press once. $10 \cdot 0$ Turn the rotary

Knob 6 steps

counterclockwise. $4 \cdot 0$

4.6.5 External modulation signal connection and setting

(1) Connection and setting method


Connect the external modulation signal input connector to MOD INPUT, AF/L R on the front panel. The input impedance is approximately $10k\Omega$, and appropriate input level is about 3Vp-p.

The appropriate input level range is obtained when both HI and LO of EXT LEVEL are turned off. Adjust the level of external modulation signal source to the range that turns off both HI and LO. When the level of external modulation signal source is too low, LO is turned on; when it is too high, HI is turned on. The external modulation signal source level need not be adjusted each time the modulation is modified.

During stereo modulation, the AF/L connector becomes either the single signal input or the left signal (LEFT) input.

The Reconnector becomes the right signal (RIGHT) input during stereo modulation.

(2) Setting range

The above chart shows the relationship between modulation and input level.

When the input level is adjusted to the range of HI and 10, it is set within the error range of $\pm 2\%$. The modulation is converted into a digital value internally on the basis of this input levels.

Whether the input signal is a composite wave signal or single wave signal, the instrument checks if the peak of the signal is within the range of HI and LO and the modulation is proportioned to the input level as shown in the above chart.

If, for example, after setting the input level in the 11, 10 range, and setting the indicator to 60%, if the input level is cut -6db, percentage modulation becomes 30% = 50% with the indicator in the 60% = 100% mode. At this time the 10% lamp illuminates, but normal 30% modulation is obtained.

4.6.6 Setting the negative peak clipper

When the panel CLIP key is pressed, the indicator illuminates and the negative peak clipper switches on. Clip level is factory set to 95%, but it is adjustable between 90% to 100%. Clip level can be adjusted by the rear panel CLIP LEVEL adjustor with a screwdriver. It is set while monitoring this unit's OUTPUT waveform on an oscilloscope.

4.7 Memory

4.7.1 Memory recall method

Memory addresses are allocated in a matrix of 10 raws and 10 columns (100 points in total).

The following is the memory address allocation diagram:

Memory addresses: 2-digit, 7-segment display.

00	01	02	03	04	05	06	07	80	09
10									•
20									•
30									•
40									•
50									•
60									•
70									•
80									•
90	•	•	•	•	•	•	•	•	•

Basically, the recall operation means to call the row number by the RCL key and numeric keys ($0\sim9$) and to call the columns number by the Memory 4×10^{-10} key.

Also, a memory row and column can be called directly by the entery of a 2-digit number by numeric keys ($0\sim9$) after clearing the [MEMORY] display by the [RCL] and [[] keys.

In the following examples, it is assumed that the carrier frequency, output level, modulation mode, etc., are set as explained in Section 4.4 to 4.6 and that they are stored in memory by the operation explined in Section 4.7.2.

(a) Example: To recall memory address "10".

Memory display

RCL key, | key.

"10"

(b) Example: To recall memory address "43".

RCL key, 4 key

Press [MEMORY] key three times. "43"

(c) Example: To recall memory address "85".

RCL key, 8 key

Press [MEMORY] & key five time. "85"

When two or addresses are to be recall continuously, the RCL key need not be pressed for the second and subsequent addresses.

(d) Example: To recall memory address "56" directly.

Press the RCL and keys. and the [MEMORY] display is cleared. Press the numeric key 5 and 6, and "56" is displayed.

When the address "78" is to be called subsequently, omit pressing the RCL key and simply press the key. When the [MEMORY] display is cleared by the key, press the numeric keys 7 and 8. Then, "78" is displayed.

4.7.2 Memory store method

Most of the function specified on front panel can be stored in the memory addresses allocated in the from of a matrix as described in Section 4.7.1, but the step values of carrier frequency, output level, and Δ FREQ function cannot be stored.

The basic store operation is to set data such as carrier frequency, output level, and modulation mode and press YE, STO, numeric key, and [MEMORY] in this order. Also, the data can be stored directly into a row and column by entering a 2-digit numbre by numeric keys after clearing the [MEMORY] display by YE and ...

(a) Example: To store 1000kHz carrier frequency, 66 EMF dBµ output level, 1kHz internal modulation source, and 75kHz FM into memory address "10"

Besides the above method, the carrier frequency may be set by the rotary knob or [FREQUNCY] and or well key.

2	AMP	×××
	6	6 پ ت
	6	66 -
	dB	6 6 پ

Besides the above method, the output level may be set by the rotary knob, the independent 4-point memory (A) to (D) key or [AMPLITUDE]

3	1kHz	$\times \times \times$
	LEFT	$\times \times \times$
	YE 30%	3 0 پ

Besides the above method, the modulation level and mode may be set by numeric keys ($0\sim9$) and modulation mode key. Aftere settings the above data, press [YE], [STO], and [I]. Then, the data is stored into memory address "10".

(b) Example: To store different data into memory address "13".

Memory display

- ① RCL 1 Δ (Press Δ twice). "12" is displayed
- Set carrier frequency, output level, modulation mode, etc.
- Press TE STO A "13" is displayed
 The data set by step ② is stored into memory address "13".
- (c) Example: To store data into memory address "45".
 - Set carrier frequency, output level, modulation mode, etc.
 - Clear [MEMORY] display by YE, STO, ...
 - Press numeric keys 4 and 5, and the data set by step 1 is stored.
- Note 1: When data is to be stored continuously, the NE, STO, and keys must not be omitted.
- Note 2: The RIN key explained in Section 4.7.3 cannot be used in the direct store method.

- 4.7.3 Storing data into a part of memory row (Setting RTN key)
 - (a) Example: To shift memory address as "10" \rightarrow "11" \rightarrow "12" \rightarrow "13" \rightarrow "10" \rightarrow "11".

key Operation

Memory Display

RCL | A Press

"13"

three times.

YE STO RTN

"13" RTN command is stored

[How to use the function]

RCL 1

"10" (First memory address)

Δ

"11" (Second memory address)

Δ

"12" (Third memory address)

Δ

"13" (Fourth memory address)

Δ

"10" (Returns to first memory address)

4.7.4 How to release the RTN key

The following two method are available:

(1) Display "19" by RCL

"19"

RCL , 1 9

Press YE STO RTN

"19"

By the above operation, all the ten columns become available as they were before the RTN key was pressed.

(2) Display "13" by RCL.

"13"

RCL 1, and A keys (Press three times)

Press YE STO 🛆

"14" RTN command is stored

.. at "14"

• •

• •

••

YE STO △ (Press

"19"

five times)

Each time the key is pressed, the RTN command is sent to the next column, and finally, all the ten columns become available as they were before RTN key was pressed.

4.7.5 Recalling more than ten columns continuously (Setting NEXT key)

Normally, up to ten memory columns (00-09,10-19,...,90-99) can be recalled at a time, but more than ten columns can be recalled continuously by the following operations:

Display column number "9" in [MEMORY] section and press [FE].

STO MEXT keys; then, another ten columns can be recalled without specifying the next row number.

(a) Example: To recall memory addresses 30-49 continuously

Key Operation Memory Display

× "39" Previous value

"39"

STO "39" STO LED comes on

NEXT "40" STO LED comes off

The memory addresses are recalled as follows:

- 4.7.6 How to release the NEXT key
 Display the memory address ("09", "19"... or "89") at which the
 function is to be released, and press the YEM, STOM and RETAIL
 keys in this order.
 - (a) Example: To reset the continuous recall of memory addresses 30-49 (to recall 30-39 and 40-49 separately)

- 4.7.7 Copying memory data to another KGS4000
 - (1) The 100-point and the output level 4-point memory data can be copied to another unit of KSG4000.
 - (2) Memory data copying method
 - ① Turn on the power for the local and remote signal generator.
 - ② Connect the remote control terminals on rear panel of the local signal generator to those of remote signal generator, using DUMP cable.
 - 3 Press YE DUMP (∇), and the copying is started.

Note: The DUMP cable uses an amphenol-type 14-pin connector.

Among the 14 pins, numbers 8 - 10 are unconnected, but all other are connected.

Optional DUMP cable Model SA510

5. REMOTE CONTROL

5.1 General Discription

5.1.1 Outline

The KSG4000 has a 14-pin connector for remote control.

5.2 Operation Procedure

5.2.1 Explanation of Remote Control Connector

Figure 5-1 shows the connector pin allocation on the rear panel.

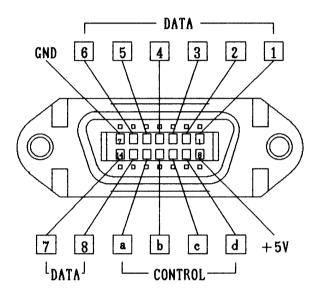


Figure 5-1

[Explanation of terminals]

In the following explanation, "1" and "0" correspond to the high and low levels of TTL respectively.

The DATA terminals are used for connecting a bus to the rear panel of the KSG4000. Since the bus is bidirectional, it can be used for both input and output.

Note: Since the DATA terminals are bidirectional bus, the signal generator does not function if data "O" or "!" is applied to the lines of DATA ## - ## directly.

- 2) CONTROL terminals a and b (Pins 11 and 12)
 - DATA STROBE output terminals (Pin 12)

 Normally, "1" is output from this terminal. When data is read, "0" is output from it.
 - REQUEST TO READ input terminals (Pin 11)

 Normally, "1" is input to this terminals. When data read is requested, "0" is input to it.
- 3) CONTROL terminals c and d (Pins 9 and 10)
 - when "1" is output from either of these terminals

 (c or d), data is being processed.

That is, the logical sum of the signals output from and d is the BUSY signal to external instrument.

4) +5V (Pin 8)

Power source for remote control (max. 100mA; equivalent to the power for turning on 2-digit LEDs)

5) GND (Pin 7)

5.2.2 Input data timing

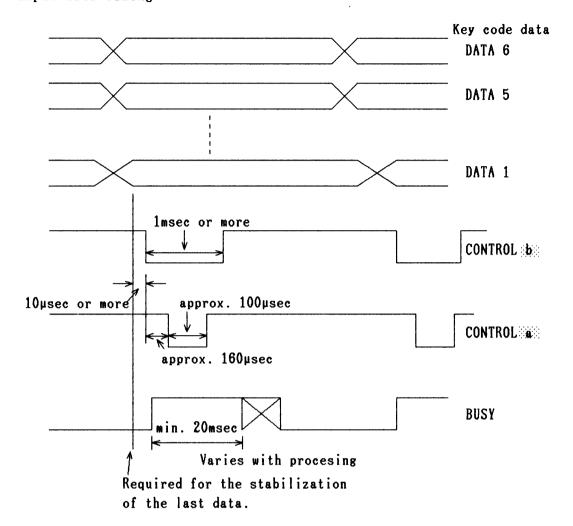


Figure 5-2

When the BUSY signal is "0", set the key code data (DATA1-6), and after the last data of DATA1-6 is established, wait for 10µsec or longer. Then, set CONTROL be to "0" for 1msec or longer as shown in Figure 5-2.

Approximately 160 μ sec after CONTROL 160 falls, CONTROL 160 is set to "0" for approximately 100 μ sec.

During this period of approximately $100\mu\text{sec}$, the key code data that have been set are read processed.

After CONTROL be falls and before CONTROL falls (that is, during the period of approximately 160µsec), the BUSY signal rises to "1" to indicate that the key code data are being processed.

Enter the next key code data after the BUSY signal is set to "0".

5.2.3 Panel key code table

All the panel keys are expressed in codes. So, setting one of the key codes listed below (table 5-1) and sending it with CONTROL is equivalent to pressing the panel key corresponding to the code.

Table 5-1

		Key Co	de Inp	ut Pin	Numbe	r
	6	5	4	3	2	1
Key Name	MSB	*	- Key	Code -		LSB
LOCAL	1	0	1	1	1	1
MEMORY RCL / STO	0	0	0	1	0	0
MEMORY V/RTN	0	0	0	1	1	1
MEMORY A / NEXT	0	0	0	1	1	0
YE (Yellow Key)	0	1	1	0	1	1
MODULATION EXT	0	0	1	0	0	1
MODULATION 400Hz	0	0	1	0	1	1
MODULATION TEHZ	0	0	1	1	0	0
CLIP	1	0	1	0	1	0
MAIN	0	1	1	1	0	0
LEFT	0	1	1	1	0	1
RIGHT	0	1	1	1	1	0
SUB	0	1	1	1	1	1
MODIATION ON	0	0	1	1	1	1
PILOT ON	0	0	1	1	1	0
DATA ENTRY PREQ / STEP FREQ	0	1	0	0	1	0
DATA ENTRY AMP / STEP AMP	0	1	0	0	1	1
DATA ENTRY AM	0	1	0	1	0	0
DATA ENTRY PILOT	0	1	0	1	0	1
DATA ENTRY O	1	1	0	0	0	0
DATA ENTRY 1	1	1	0	0	0	1
DATA ENTRY 2	1	1	0	0	1	0
DATA ENTRY 3	1	1	0	0	1	1
DATA ENTRY 4	1	1	0	1	0	0
DATA ENTRY 5	1	1	0	1	0	1
DATA BNTRY 6	1	1	0	1	1	0

(cont'd)

Table 5-1

Key Name	MSB	*	- Key	Code -	→	LSB
DATA ENTRY 7	1	1	0	1	1	1
DATA ENTRY 8	1	1	1	0	0	0
DATA ENTRY 9	1	1	1	0	0	1
DATA ENTRY .	1	0	1	1	1	0
DATA ENTRY	1	0	1	1	0	1
DATA ENTRY 😂	0	0	1	0	0	0
DATA ENTRY MH2	0	1	0	1	1	0
DATA ENTRY kHz, %, db	1	0	0	1	0	1
DATA ENTRY <<	0	1	0	1	1	1
DATA ENTRY	1	1	1	1	0	0
DATA ENTRY >	1	1	1	1	1	0
DATA ENTRY >>	0	1	1	0	0	0
DATA ENTRY Rotary knob UP	0	0	0	0	0	0
DATA ENTRY Rotary knob DOWN	0	0	0	0	0	1
frequency Δ freq	1	1	1	1	0	1
FREQUENCY +/-	1	0	1	0	0	1
Frequency 🕰	0	1	1	0	0	1
FREQUENCY	0	1	1	0	1	0
AMPLITUDE RCL A/STO A	1	0	0	0	0	1
AMPLITUDE RCL B/STO B	1	0	0	0	1	0
AMPLITUDE RCL G/STO C	1	0	0	0	1	1
AMPLITUDE RCL D/STO D	1	0	0	1	0	0
AMPLITUDE A	1	0	0	1	1	0
AMPLITUDE V	1	0	0	1	1	1

5.2.4 Setting frequency by remote control (example)

The frequency of 450kHz is to be set.

- 1) Set the FREQ code "010010" according to the panel key code table (Table 5-1).
- 2) Send CONTROL which is set to "0" for lasec or longer as shown in Figure 5-2 (input data timing).
- 3) Set the data "450" according to the code table and send CONTROL b signal as shown in Figure 5-3.

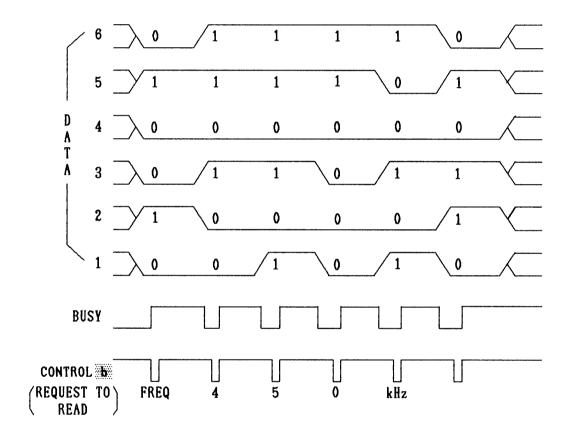


Figure 5-3

- 4) Finally, send "100101" for "kHz" with CONTROL be signal, and the data transmission is completed.
- 5) When the signal generator receives the last data, namely, "100101" for "kHz" and CONTROL , it starts processing the specified frequency.

5.2.5 Remote Control circuit diagram example and operation.

Since the data lines of the remote control connector are bidirectional bus lines, it is recommended to use the circuit shown in Figure 5-4 when controlling the signal generator from a remote unit.

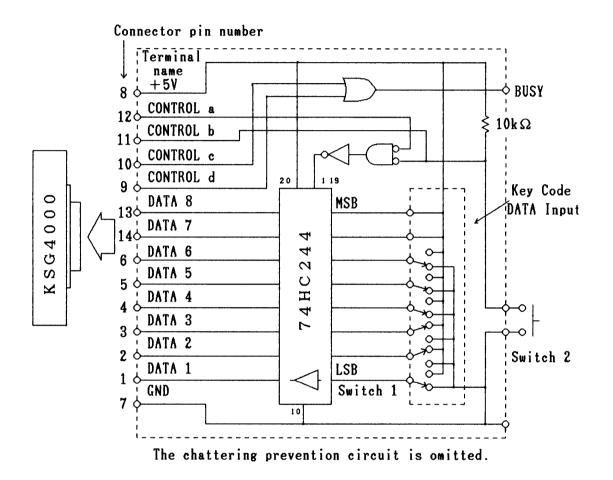


Figure 5-4

Figure 5-4 shows the remote control circuit that increments the memory address by one each time the switch is pressed.

Set the data of MEMORY RCL \triangle on Key Code Data Input Switch 1 according to the key code table (Table 5-1) and set CONTROL is to "0" (Press Switch 2). Then, approximately 160µsec later, CONTROL is set to "0" and Enable A and B (pins 1 and 19) of 74HC244 are set to "0". The data is sent to the KSG4000 during the period of approximately 100µsec when CONTROL is "0"

If other key code data of the key code table is set on Switch 1, the function of the corresponding key on the front panel can be controlled in remote mode.

When using a computer for the external remote control on the basis of function shown in Figure 5-4, be sure to confirm that the BUSY signal is set to "0" before setting CONTROL be to "0" for more than lasec.

Note: Since the control terminals (DATA terminals) are assigned to eight bits, the fixed data "I" is sent for the 7th and 8th bits (pins 14 and 13) through 74HC244.

5.2.6 Memory Display output circuit example

Figure 5-5 shows an example circuit.

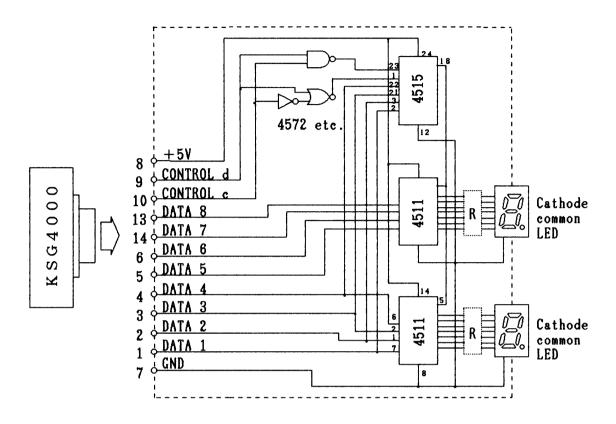


Figure 5-5

Since the remote control terminal has a bidirectional bus structure, it can output the same data displayed in the [MEMORY] section of the signal generator through the circuit shown in Figure 5-5. In addition to being displayed on a remote device, the data in the [MEMORY] section can be used for a process if the CMOS 4511 is replaced by a latch circuit.

If the circuit in Figure 5-4 is connected to that in Figure 5-5 by the connector section in parallel, the user can not only control the signal generator from a remote unit but also display the data in [MEMORY] section on a remote unit or check the data on the signal generator by a remote unit.

6. BATTERY BACKUP AND INITIALIZING CPU

The KGS4000 uses a memory backup battery, and the battery may discharge all its electricity when the signal generator is not used for a long time.

Turn on the power for the signal generator having a charging circuit, and fully charge the battery.

The memory backup battery is greatly affected by surrounding temperature, humidity, and storage conditions. After about five years, discharge capability of the battery is reduced to approximatly 90% of the initial capability. The battery is fully usable in this state, but when it becomes unusable, replace it with CADNIC BAKUP N-SB3 of Sanyo Electric Co. or GB 50H-3X of Japan Storage Battery Co..Ltd.

[Battery position and replacement method]

Remove the top panel of the instrument, and thee aluminum sash cases are found.

Among these cases, the one attached to the left side of the instrument contains the CPU printed circuit board, and the battery is mounted on this board.

Remove two screws from the left side, take out aluminum sash case, pull out the PC board, and replace the battery with a new one.

When the battery replacement is finished, turn the power switch to ON, press the initial set push-button switch once to <u>initialize the CPU</u>. Then the replace the aluminum sash case and replace the two screws.

7. **GP-IB**

(General Purpose Interface Bus)

7.1 Introduction

7.1.1 General description

The KSG4000 has a GP-IB interface, and it can be controlled by the IEEE 488 standard interface bus.

7.1.2 Features

- 1) The functions of the signal generator can be controlled by the IEEE 488 standard interface bus.
- 2) The remote mode can be verified by the REMOTE indicator.
- 3) The signal generator can be set in local mode at any time by the pressing of LOCAL key. In the local mode, manual operation on the front panel is allowed. (In local lockout mode, however, the manual operation is not allowed.)
- 4) The device address assigned to the signal generator can be displayed in the AMPLITUDE section.

7.2 Performance

7.2.1 Interface functions

SHO: No source handshake

AH1: Complete acceptor handshake

TO: No Talker function

L1: Basic listener, listen only mode

SRO: No service request capability

RL1: Complete remote/local capability

Local lockout capability

PPO: No parallel poll capability

DC1: Complete device clear capability
Select device clear capability

DTO: No device trigger capability

CO: No controller capability

7.2.2 Electrical specifications related to interface system Compiles to IEEE Std 488-1975.

7.3 Operation Procedure

7.3.1 Preparation for use

Turn on the power and check the device address of the signal generator on GP-IB.

- 1) Press the LOCAL key after the EXE key, and device address "07" is displayed in the [AMPLITUDE] section.
- 2) To change the device address, turn off the power and set a new address according to the address setting method explained in Section 7.3.2.
- 3) Connect the GP-IB cable when the power is off.

7.3.2 Address setting method

The address of the KSG4000 is set at "07" when the instrument is delivered from the factory.

The address switch is mounted on the CPU board in the signal generator. To set a new address, remove the top panel and shield board and manipulate the address switch S2 on the PC board 90-SIG-90101 found in the left aluminum sash case viewed from the front panel.

The address "07" can be changed to a desired address.

Remove the two screws on the right side the aluminume sash case.

The aluminum sash case can be taken out. Lift the case, and pull out the case.

After setting the address, put the board back to its original position.

- a) Table 7-1 lists the values of S2 and corresponding addresses.
- b) When a switch of S2 is set to ON, the corresponding bit is set to the level of "O".
- c) Figure 7-1 shows how S2 is set for address "07".

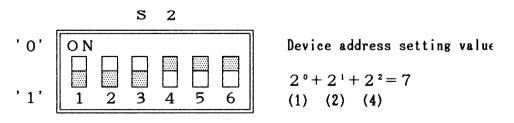


Figure 7-1

Table 7-1

Listener address	Ado	ire	288	5 5	S W I	itch
Device number	1	2	3	4	5	6
00	0	0	0	0	0	0
01	1	0	0	0	0	0
02	0	1	0	0	0	0
03	1	1	0	0	0	0
04	0	0	1	0	0	0
05	1	0	1	0	0	0
06	0	1	1	0	0	0
07		1	1	0	O	0
08	0	0	0	1	0	0
09	1	0	0	1	0	0
10	0	1	0	1	0	0
11	1	1	0	1	0	0
12	0	0	1	1	0	0
13	1	0	1	1	0	0
14	0	1	1	1	0	0
15	1	1	1	1	0	0
16	0	0	0	0	1	0
17	1	0	0	0	1	0
18	0	1	0	0	1	0
19	1	1	0	0	1	0
20	0	0	1	0	1	0
21	1	0	1	0	1	0
22	0	1	1	0	1	0
23	1	1	1	0	1	0
24	0	0	0	1	1	0
25	1	0	0	1	1	0
26	0	1	0	1	1	0
27	1	1	0	1	1	0
28	0	0	1	1	1	0
29	1	0	1	1	1	0
30	0	1	1	1	1	0
Listen only	*	*	*	*	*	1

The DIP-SW is set to "07" at the factory

DIP SW

 $1 = OFF \quad 0 = ON$

7.3.3 Available control command and bus line commands

Table 7-2

Control commad and bus line command (for hp BASIC)	Explanation
OUTPUT	pecifies the listener address and sends program data.
REMOTE	Turns on the REMOTE indicator (red) and prepares for receiving data when the listener address is specified. If the LOCAL key on the front panel is pressed in this state, the REMOTE indicator is turned off and the signal generator is set in local mode to enable manual operation on the front panel.
LOCAL	Disables manual operation on all the devices on
LOCKOUT	GP-IB. The LOCAL LOCKOUT command is an universal command.
LOCAL	Turns off the REMOTE indicator and sets the signal generator in local mode to allow manual operation on the front panel.
CLEAR	Sets the signal generator in the same state as the initial power-on state.

Note: Since the bus line commands vary with the computer to be used, refer to the instruction manual of the specific computer to be used.

7.3.4 Program code table

Set the measuring conditions for KSG4000 with the codes listed in Table 7-3.

Table 7-4 list the codes in alphabetical order, and Table 7-5 gives the function setting methods. See these tables also.

When creating a control program, arrange the program codes in the same order as the corresponding functions that would be specified on the panel.

Table 7-3 GP-IB Function Setting Method

Item	Program code	Data	Unit
Carrier frequency	FR	0.00	HZ,KZ,
			MZ
Output		,	
EMF dBµ	EM		
dBm	DM		
Output level	AP	00.0	DB
Modulation			
AM depth	AM	00.0	PC
AM depth	AM	00.0	%
Amplitude modulation OFF	AMS4		
PILOT modulation factor	PL	00.0	%
PILOT OFF	P0		
PILOT ON	P1		
External modulation ON	SIAM		
Modulation signal source 400Hz	S2AM		
Modulation signal source 1kHz	S3AM		
Stereo MAIN	M1		
Stereo LEFT	M2		
Stereo RIGHT	M3		
Stereo SUB	M4		
EXT L/R	M5		
Clipper OFF	CO		
Clipper ON	C1		
Memory control			
Memory recall	RC	00	
Memory store	ST	00	

- Note 1: The mark "---" means an optional item.
 - 2: The mark "OO" means than the data may be specified with one digit up to the maximum number of digits.
 - 3: Data must be expressed in integers or real numbers; it must not be expressed in E format.
 - 4: Alphabetic characters may be expressed in small letters.

Table 7-4 GP-IB Program Codes

Alphabetical order

		Alphabetical order
Program code	Explanation	Remarks
AM	Amplitude modulation	Function mode
AP	Output level	Function mode
C0	Clipper OFF	
C1	Clipper ON	
DB	Output dB	Unit
DM	Output dBm	Function mode
EM	Output EMF dBµ	Function mode
FR	Carrier frequency	Function mode
HZ	Hz	Unit
KZ	kHz	Unit
M1	Stereo MAIN	Modulation mode
M2	Stereo LEFT	Modulation mode
м3	Stereo RIGHT	Modulation mode
M4	Stereo SUB	Modulation mode
M5	EXT L/R	External Modulation mode
MZ	MHz	Unit
P0	PILOT OFF	
P1	PILOT ON	
PC	Modulation in percent	Unit
PL	Modulation PILOT	Function mode
RC	Memory recall	Function mode
S 1	External modulation ON	Modulation signal source
		switching
S 2	Internal modulation 400Hz	Modulation signal source
		switching
S 3	Internal modulation 1kHz	Modulation signal source
		switching
S 4	Modulation OFF	Modulation signal source
		switching
ST	Memory store	Function mode
0 - 9	Numeric value	Data
_	Minus sign	Data
	Decimal point	Data
%	Modulation in percent	Unit

Table 7-5 GP-IB Program Code

Classified by function

Function	Program code
Carrier frequency	FR
Output	AP
EMF dBµ	EM
dBm	DM
Modulation	
Amplitude modulation	AM
PILOT modulation	PL
External modulation ON	S 1
Int. modulation 400Hz	S2
Int. modulation 1kHz	S 3
Modulation OFF	S 4
Stereo MAIN	M1
Stereo LEFT	M2
Stereo RIGHT	M3
Stereo SUB	M4
EXT L/R	M5
PILOT OFF	P0
PILOT ON	P1
Clipper OFF	C0
Clipper ON	C1
Data	
Numeric value	0 - 9
Minus sign	_
Decimal point	
Unit	
MHz	MZ
kHz	KZ
Нz	HZ
dB	DB
%	PC or %
Memory	
Memory recall	RC
Memory store	ST

7.3.5 Basic data setting method

IMHz carrier frequency, EMF 120dBµ output level, 1kHz internal modulation frequency, and AM depth 95% are to be set. In the following examples, HP9816 is used:

Example 1: OUTPUT 707; "FR1MZ, EMAP120DB, S3AM95%"

Output Frequency Output AM modulation command data level data data

Normally, CRLF or EOI is sent.

Example 2: To send the above data items one by one

OUTPUT 707; "FR1MZ"

OUTPUT 707; "EMAP120DB" OUTPUT 707; "S3AM95%"

Example 3: To set the carrier frequency at 455kHz
a) "FR455KZ"

Example 4: To set the output level at 120 EMF dB μ a) "EM, AP120DB" b) "EM" , "AP120DB"

Example 5: To set the output level at -3.5dBm a) "DU, AP-3.5DB" b) "DU", "AP-3.5DB"

Example 6: To set the internal modulation frequency at 400Hz and AM depth at 30%

a) "S2AM30%" b) "S2AM30PC"

Example 7: To set external modulation and depth at 95% a) "SIAM95%" b) "SIAM", "AM95%" Note: SI only is invalid.

Example 8: To turn off modulation
a) "AMS4"

Example 9: To recall memory address "36" a) "RC36"

Example 10: To store data at memory address "36" a) "ST36"

7.3.6 Connector pin allocation diagram

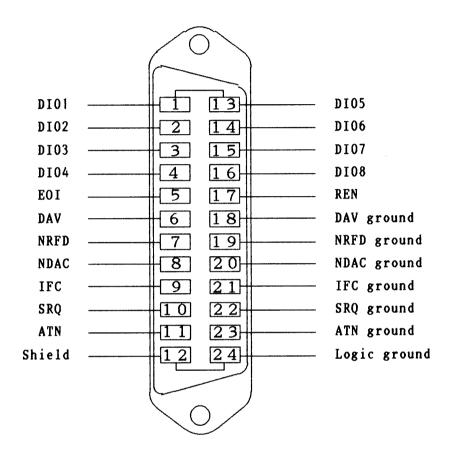


Figure 7-2

7.3.7 Reference (Program example)

An example of a program for HP9816 is given below. This program is to set the data of frequency, output level, and modulation factor, to store the data into the signal generator, and to recall the data from it. This program is just for reference, and it may not be the best one. Since the program description method varies with the system to control the signal generator, code the program in the most suitable way for the system.

		T
10	Dev=707	Interface select code
		* 100 + Device address
20	Frequency=100*1.E+6	10000000Hz
30	Freqstep=10*1.E+6	10000000Hz
40	Leve1=120	120dB
50	Levelstep=-10	- 10dB
60	Am=95	95%
70	Fmstep=-5	- 5%
80	CLEAR Dev	Clear selected device
90	WAIT 2	
100	OUTPUT Dev;"PO"	PILOT OFF
110	FOR N=O TO 9	
120	Freq=Frequency+Freqstep*N	
130	Lev=Level+Levelstep*N	
140	Amlev=Am+Amstep*N	
150	OUTPUT Dev;"FR";Freq/1.E+6;"MZ"	Set frequency
160	OUTPUT Dev;"EMAP";Lev;"DB"	Set output level
170	OUTPUT Dev;"AMS4"	Turn off AM modulation
180	OUTPUT Dev;"S2AM";Amlev;"PC"	Set 400Hz internal
		modulation frequency and
		AM depth
190	OUTPUT Dev;"ST";N	Store data into memory
200	NEXT N	
210	FOR N=O TO 9	Recall data from memory
220	OUTPUT Dev;"RC";N	
230	WAIT 2	
240	NEXT N	
250	END	